A Novel and Robust Approach for Iris Segmentation

نویسندگان

  • Muhammad H Dashtban
  • Parham Moradi
  • S. V. Sheela
  • P. A. Vijaya
چکیده

Iris segmentation is almost the most challenging part in iris recognition. Several robust algorithms in the recognition part have been developed in literature yet. In this paper, we focus on an efficient approach for iris segmentation. The main purposes are to improve accuracy and to reduce computational time of iris localization. Briefly, this approach tries to explore regions of interests (ROI) among image regions and to localize iris from one or more remaining regions. ROI are the regions in which, the iris is most likely exit. An empirical binarization method for iris images is presented. Its aim is to preserve the iris region while removes background. A novel candidate selection is presented for extracting iris region among other image regions. For localizing the iris boundaries from the identified region, the Daugman’ Integro operator is being used. It is obvious that iris localization from one or fewer number of regions is more accurate and faster than the whole detailed image. Moreover, a novel and very fast clustering algorithm is proposed. It is used to detect and remove some extra or rough details of image. The proposed approach is being tested on CASIA-IrisV2 dataset. The experiments show that the proposed approach yielded reliable regions of interest and provided accurate segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Iris Recognition in Unconstrained Environments

A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Iris recognition based on robust iris segmentation and image enhancement

A new iris recognition method based on a robust iris segmentation approach is presented in this paper for improving iris recognition performance. The robust iris segmentation approach applies power-law transformations for more accurate detection of the pupil region, which significantly reduces the candidate limbic boundary search space for increasing detection accuracy and efficiency. The limbi...

متن کامل

Novel Approach of Accurate Iris Localisation Form High Resolution Eye Images Suitable for Fake Iris Detection

High resolution images not only provide high recognition rate but also useful in safeguarding the iris recognition system from fake iris attack. To safeguard the iris recognition system against fake irises, one of the very popular technique is to detect the change in pupil size due to change in illumination. Many of existing methods assume that iris and pupil are circular or elliptical in natur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011